3.760 \(\int \frac {1}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=306 \[ \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {a+b} \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {a+b} \sqrt {\sec (c+d x)}} \]

[Out]

2*a*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/
2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+se
c(d*x+c))/(a-b))^(1/2)/a/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)+2*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1
/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(
a-b))^(1/2)/a/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 306, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4222, 2794, 2795, 2816, 2994} \[ \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {a+b} \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {a+b} \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*Sqrt[a +
b]*d*Sqrt[Sec[c + d*x]]) + (2*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[
a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x
]))/(a - b)])/(a*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) + (2*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt
[a + b*Cos[c + d*x]])

Rule 2794

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(-2*a*
d*Cos[e + f*x])/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]]), x] - Dist[d^2/(a^2 - b^2), Int[
Sqrt[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2795

Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Dis
t[(c - d)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[(b*c - a*d)/(a - b
), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{a^2-b^2}\\ &=\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2}-\frac {\left ((-a+b) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2}\\ &=-\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.02, size = 235, normalized size = 0.77 \[ \frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) \left ((a-b) \sin (c+d x) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}}-(a+b \cos (c+d x)) F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+(a+b \cos (c+d x)) E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sec[(c + d*x)/2]^2*((a + b*Cos[c + d*x])*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (a + b*Cos[c
 + d*x])*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + (a - b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]
*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sin[c + d*x]))/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]/(1 +
Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sqrt[Sec[c + d
*x]])

________________________________________________________________________________________

fricas [F]  time = 1.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \cos \left (d x + c\right ) + a}}{{\left (b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\sec \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)/((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.29, size = 811, normalized size = 2.65 \[ \frac {2 \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) a +\EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, b -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) a -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) b +\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) a \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) b \sin \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) a \sin \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) b \sin \left (d x +c \right )-a \left (\cos ^{2}\left (d x +c \right )\right )+\left (\cos ^{2}\left (d x +c \right )\right ) b +a \cos \left (d x +c \right )-b \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{d \sin \left (d x +c \right ) \sqrt {a +b \cos \left (d x +c \right )}\, \left (a -b \right ) \left (a +b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x)

[Out]

2/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))
/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^
(1/2))*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b
-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b+(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x
+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*
a*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos
(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b*sin(d*x+c)-a*cos(d*x+c)^2+cos(d*x+c)^2*b+a*cos(d*x+c)-b*cos(d*x+c)
)*(1/cos(d*x+c))^(1/2)/sin(d*x+c)/(a+b*cos(d*x+c))^(1/2)/(a-b)/(a+b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/((a + b*cos(c + d*x))**(3/2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________